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ABSTRACT. The mode of a distribution provides an important summary of data and is often
estimated on the basis of some non-parametric kernel density estimator. This article develops a new
data analysis tool called modal linear regression in order to explore high-dimensional data. Modal
linear regression models the conditional mode of a response Y given a set of predictors x as a linear
function ofx. Modal linear regression differs from standard linear regression in that standard linear
regression models the conditional mean (as opposed to mode) of Y as a linear function of x. We
propose an expectation–maximization algorithm in order to estimate the regression coefficients of
modal linear regression. We also provide asymptotic properties for the proposed estimator without
the symmetric assumption of the error density. Our empirical studies with simulated data and real
data demonstrate that the proposed modal regression gives shorter predictive intervals than mean
linear regression, median linear regression and MM-estimators.
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1. Introduction

The mode provides an important summary of data. Many authors have made efforts to iden-
tify modes of population distributions for low-dimensional data (see, for example, Muller &
Sawitzki (1991), Scott (1992), Friedman & Fisher (1999), Chaudhuri & Marron (1999), Fisher
& Marron (2001), Davies & Kovac (2004), Hall et al. (2004), Ray & Lindsay (2005), & Yao
& Lindsay (2009), as well as documentations of the R package ‘np’ for non-parametric mode
estimation). In high-dimensional data, it is often of interest to impose some model structure
assumption on conditional distributions in order to identify associations between a response
and a set of predictors. To the best of our knowledge, little research has been carried out to
hunt conditional modes in regression problems.

Suppose we have collected a random sample ¹.xi ; yi /; i D 1; : : : ; nº, where xi is a
p-dimensional column vector and yi is observation of a continuous response variable Y . Con-
ventional regression methods usually model the mean or median of f .y j x/ as a linear function
of x, where f .y j x/ is the conditional density function of Y given x. In this article, we propose
a new regression model called modal linear regression (MODLR) that assumes that the mode of
f .y j x/ is a linear function of the predictor x. MODLR measures the centre using the ‘most
likely’ conditional values rather than the conditional average. Compared with other regression
models, the proposed MODLR has the following features:

(i) MODLR attempts to capture the ‘most probable’ value—the mode (instead of the
mean, median or quantile) of the conditional distribution of Y given x. The conditional
mode may be a more useful summary than the conditional mean when the conditional
distribution of Y given x is asymmetric.
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(ii) MODLR may provide shorter prediction intervals than other linear regression
approaches for a nominal confidence level, because an interval around a conditional
mode can cover more samples than an interval of the same length around a conditional
mean.

(iii) MODLR is robust to outliers that do not follow the same relationship exhibited
by the majority of a sample and is also robust to heavy-tailed conditional error
distributions.

(iv) MODLR is well justified in situations where conditional distributions are highly
skewed. Many robust regression methods still target the mean regression function and
require symmetries in conditional distributions. Quantile regression is another alterna-
tive data analysis tool when the data is skewed. However, quantile regression cannot
reveal the modal information and might produce a low density point prediction.

Modal linear regression is potentially a very useful addition to current data analysis tools.
However, estimation of modal regression coefficients is not trivial. In this article, we propose an
expectation–maximization (EM) algorithm that minimizes a kernel-based objective function
for estimating modal regression coefficients. We have studied asymptotic and other theoretical
properties of the proposed estimation procedure. We also propose a method for construct-
ing asymmetric prediction intervals that can have better coverage than symmetric prediction
intervals when conditional distributions are highly skewed.

The rest of this article is organized as follows. In Section 2, we introduce the kernel-based
objective function and the EM algorithm for maximizing it; we also provide the theoretical
properties of the estimation procedure. In Section 3, we use simulated datasets to compare
the proposed MODLR with least square regression, median regression (MEDREG) and MM-
estimators. We also compare these regression methods using forest fire data. Our empirical
results show that MODLR provides significantly shorter prediction intervals than other regres-
sion methods. The article is concluded in Section 4 with discussions of possible future work.
Proofs of the consistency of our estimators and necessary technical conditions are given in
the Appendix.

2. Modal linear regression

2.1. Introduction to modal linear regression

Suppose that a response variable Y given a set of predictor x is distributed with a probability
density function f .y j x/. Assume that the mode of f .y j x/, denoted by Mode.Y j x/ D
arg maxy.f .y j x//, is unique. The proposed MODLR method assumes that Mode.Y j x/ is a
linear function of x, that is,

Mode.Y j x/ D xTˇ: (1)

In (1), we assume that the first element of x is 1; this represents the intercept term. Let � D
y � xTˇ; we denote the conditional density of � given x by g.� j x/ and refer to it as the
error distribution. Note that the estimation method (and its asymptotic justification) that we
will propose next allows for the error distribution to depend on x.

If g.� j x/ is symmetric about 0, the ˇ in (1) will be the same as the coefficients obtained
by conventional mean linear regression; however, if g.� j x/ is skewed, modal regression coeffi-
cients and conventional linear regression coefficients will be different. It is even possible that the
mode of Y given x is a linear function of x, but the conventional mean is non-linear. The fol-
lowing example illustrates the difference between modal regression function and conventional
mean regression function when the error distribution is skewed.
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Example 1. Let .x; Y / satisfy the following model assumption

Y D m.x/C �.x/"; (2)

where " has density h.�/. Suppose h.�/ is a skewed density with mean 0 and mode 1.

(i) If m.x/ D xTˇ and �.x/ D xT˛, then

E.Y j x/ D xTˇ and Mode.Y j x/ D xT .ˇ C ˛/:

Thus, Y depends on x linearly from the point of view of both mean regression and
modal regression even though their regression parameters are different.

(ii) If m.x/ D 0 and �.x/ D xT˛, then

E.Y j x/ D 0 and Mode.Y j x/ D xT˛:

Therefore, in terms of conditional mean, Y does not depend on x; however, in terms of
conditional mode, Y does depend linearly on x. From this example, we see that variable
selection techniques based on modal regression might reveal some useful predictors that
mean regression cannot.

To estimate the modal regression parameter ˇ in (1), we propose maximizing the kernel-
based objective function

Qh.ˇ/ �
1

n

nX
iD1

�h

�
yi � x

T
i ˇ

�
; (3)

where �h.t/ D h�1�.t=h/ and �.t/ is a kernel density function symmetric about 0. For the
remainder of the paper, we will assume that � is the standard normal density (for the simplicity
of computation). On the basis of this choice of kernel, the M-step of the modal EM (MEM)
algorithm presented next has the closed-form solution shown in (6). It should be noted that all
the asymptotic results presented in this article still hold if other kernels are used. We will denote
the maximizer of (3) by Ǒ and call it the MODLR estimator, shortened by MODLRE.

We now explain why (3) can be used to estimate the modal regression coefficients. We first
look at the simplest case in which there is no predictor, that is, ˇ D ˇ0. For such cases, (3) is
simplified to

Qh.ˇ0/ �
1

n

nX
iD1

�h.yi � ˇ0/: (4)

Note that Qh.:/ is the kernel estimate of the density function of Y . Therefore, the maximizer
of (4) is the mode of the kernel density function based on y1; : : : ; yn. When n ! 1 and
h ! 0, the mode of this kernel density function will converge to the mode of the distribution
of Y . Such a modal estimator has been proposed by Parzen (1962). When there are predictors
present, for any fixed ˇ, Qh.ˇ/ in (3) is the value of the kernel density function based on the
residuals �i D yi � xiˇ at � D 0. Maximizing (3) with respect to ˇ yields the line xT Ǒ such
that the kernel density function of residuals �i has the highest value at 0. In the special case
that �h.t/ D .2h/�1I.jt j � h/, a uniform kernel, maximizing (3) yields the line xT Ǒ such that
the band xT Ǒ ˙ h covers the largest number of response values yi .

Lee (1989) used a uniform kernel to estimate modal regression coefficients. In his theoretical
investigation, h is fixed and does not depend on the sample size n. In order to get consistency
results for the estimator, Lee assumed the error distribution to be symmetric. Note that in such
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cases, the modal line is the same as the traditional mean regression line. Thus, Lee’s theoretical
results did not justify applications of MODLR for situations with skewed error distributions
(where MODLR is more useful than other regression methods). In this article, we prove (see
Appendix for details) that if we let h ! 0 when n ! 1, the Ǒ found by maximizing Qh.ˇ/
in (3) is a consistent estimate of the modal regression parameter in (1) for very general error
density functions without symmetry assumptions.

2.2. Modal expectation–maximization algorithm

There is no closed-form expression of the maximizer of (3); therefore, we propose to extend the
MEM algorithm (Li et al., 2007; Yao, 2013) in order to maximize (3).

Similar to an EM algorithm, the MEM algorithm consists of an E-step and an M-step.
Starting with ˇ.0/, repeat the following two steps until it converges:

E-Step: In this step, we calculate weights �
�
j j ˇ.k/

�
; j D 1; : : : ; n as

�
�
j j ˇ.k/

�
D

�h

�
yj � x

T
j
ˇ.k/

�
Pn
iD1 �h

�
yi � x

T
i
ˇ.k/

� / �h �yj � xTj ˇ.k/� : (5)

M-Step: In this step, we update ˇ.kC1/

ˇ.kC1/ D arg max
ˇ

nX
jD1

°
�
�
j j ˇ.k/

�
log�h

�
yj � x

T
j ˇ

�±

D
�
XTW kX

��1
XTW ky;

(6)

whereX D .x1; : : : ;xn/T ,W k is an n�n diagonal matrix with diagonal elements �.j j ˇ.k//
and y D .y1; : : : ; yn/T .

Some remarks on the proposed MEM algorithm:

(i) the major difference between the least squares estimate (LSE) and the MODLRE lies
in the E-step. For the LSE, each observation has equal weights, whereas for MODLRE,
the weights depend on how close yi is to the modal regression line. This weighting
scheme allows MODLRE to reduce the effect of observations far away from the modal
regression line and thus robustness is achieved.

(ii) when the normal kernel is used for � in (3), the function optimized in the M-step is
a weighted sum of log likelihoods corresponding to ordinary linear regression. In this
case, we obtain a closed-form expression for the maximizer in (6). If other kernels are
used, some optimization algorithms are needed in the M-step.

(iii) the converged value obtained by the MEM algorithm depends on the starting point
chosen, and there is no guarantee that the algorithm will converge to the global optimal
solution of (3). Therefore, it is prudent to run the algorithm multiple times using several
different starting points and choose the best local optima found.

We have proven (see Appendix) the ascending property of the proposed MEM for any choice
of kernel for � in (3):

Theorem Each iteration of (5) and (6) will monotonically non-decrease the objective

function (3), that is, Qh
�
ˇ.kC1/

�
� Qh

�
ˇ.k/

�
, for all k.
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The iteratively reweighted least squares (IRWLS) algorithm has been commonly used for
general M-estimators. Because the maximizer of (3) can be considered as a special case of
M-estimators, the IRWLS algorithm can be applied to find Ǒ . When the normal kernel �.�/
is used, the IRWLS algorithm is indeed equivalent to the proposed MEM algorithm, but
when other kernels are used, the two algorithms are different. IRWLS has been proven to
be ascending (i.e. monotonically non-decreases the objective function) if ��.x/=x is non-
increasing (Huber, 1981). However, when �.x/ is a normal density function, ��.x/=x is not
non-increasing. Therefore, the existing theories of IRWLS cannot justify theorem 2.1 if the
normal kernel �.�/ is used. Because the proof of theorem 2.1 is for any kernel density �.�/,
including the normal kernel, theorem 2.1 provides an extension to existing IRWLS theories.

2.3. Asymptotic properties of Ǒ

The asymptotic properties established for traditional M-estimators are based on assumptions
that the error density is symmetric and the objective function is fixed. In addition, the target of
traditional M-estimators is the conditional mean. For our proposed modal regression, we will
allow that the tuning parameter h in the objective function goes to zero and the error density
can be skewed. Therefore, the theoretical results on the traditional M-estimators cannot be
directly applied to the proposed MODLRE. In this section, we will give the results about the
consistency of the proposed modal regression estimator Ǒ for model (1), its convergence rate
and its asymptotic distribution. Their proofs are given in the Appendix.

Theorem When h ! 0 and nh5 ! 1, under the regularity conditions (A1)–(A3) in the
Appendix, there exists a consistent maximizer of (3) such that

jj Ǒ � ˇ0jj D Op

²
h2 C

�
nh3

��1=2³
;

where ˇ0 is the true coefficient of the modal regression function defined in (1).

Theorem Under the same assumptions as theorem 2.2, the Ǒ that satisfies the consistency
result given in theorem 2.2 has the following asymptotic normality result

p
nh3

"
Ǒ � ˇ0 �

h2

2
J�1K¹1C op.1/º

#
D
�! N

°
0; �2J

�1LJ�1
±
; (7)

where �2 D
R
t2�2.t/dt and

J D E
°
g00 .0 j xi /xix

T
i

±
IK D E

®
g000.0 j xi /xi

¯
IL D E

°
g.0 j xi /xix

T
i

±
:

Parzen (1962) and Eddy (1980) have proven similar asymptotic results for kernel estimators
of the mode of the distribution of Y without conditioning on x. Therefore, the results of Parzen
(1962) and Eddy (1980) can be considered as special cases of theorem 2.3 when there is no
predictor involved, that is, x D 1.

By theorem 2.3, the asymptotic bias of Ǒ is h2J�1K=2, and the asymptotic variance is
�2J
�1LJ�1=.nh3/: A theoretic optimal bandwidth h for estimating ˇ can be obtained by

minimizing the asymptotic weighted mean squared errors

E
°
. Ǒ � ˇ0/

TW. Ǒ � ˇ0/
±
� KT J�1WJ�1Kh4=4C .nh3/�1�2tr

�
J�1LJ�1W

�
;

where tr.A/ is the trace of A and W is a diagonal matrix, whose diagonal elements reflect
the importance of the accuracy in estimating different coefficients. Therefore, the asymptotic
optimal bandwidth h is
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Ohopt D

"
3�2tr

�
J�1LJ�1W

�
KT J�1WJ�1K

#1=7
n�1=7: (8)

If W D .J�1LJ�1/�1 D JL�1J , which is proportional to the inverse of the asymptotic
variance of Ǒ , then

Ohopt D

�
3�2.p C 1/

KTL�1K

�1=7
n�1=7: (9)

Let ˇ D .ˇ0;ˇs/
T , where ˇ0 is a scalar intercept parameter and ˇs is the slope parameter.

If � is independent of x, then

J�1K D .1; 0; : : : ; 0/T g000.0/=
®
2g00.0/

¯
;

and thus, the asymptotic bias of the slope parameter ˇs is 0. Therefore, the optimal bandwidth
h for estimating ˇs should go to infinity, which implies that the resulting estimate Ǒ s is an
LSE with root n consistency. This is expected because when � is independent of x, the slope
parameter ˇs of modal regression line is the same as the slope parameter of conventional mean
regression line and thus can be estimated at root n convergence rate.

Given the root n consistent estimate Ǒ s (using LSE, for example), we propose to further
estimate ˇ0 by

Ǒ
0 D arg max

ˇ0

1

n

nX
iD1

�h

�
yi � x

T
i
Ǒ
s � ˇ0

�
: (10)

The aforementioned maximization can be carried out similarly using the MEM algorithm
proposed in Section 2.2 We have the following result for Ǒ0. Its proof is given in the Appendix.

Theorem Under the same assumption as theorem 2.2, if � is independent of x and g00.0/ ¤ 0,
the Ǒ0 defined in (10) has the following asymptotic distribution:

p
nh3

´
Ǒ
0 � ˇ0 �

g000.0/h2

2g00.0/
C op.h

2/

μ
D
�! N

²
0;
g.0/�2

Œg00.0/�2

³
: (11)

Note that when � is independent of x, J�1LJ�1 D g00.0/�2g.0/E
�
xxT

��1
. Let

A D E
�
xxT

�
D

 
1 A12

AT
12

A22

!

and a11 be the (1,1) element of A�1. Noting that a11 D
�
1 � A12A

�1
22
AT
12

��1
and A22 is

positive definite, we have a11 � 1: Therefore, on the basis of theorems 2.3 and 2.4, we can
see that using the root n consistent estimate Ǒ s as initial, we can get more efficient estimate of
the intercept ˇ0 than the one found by maximizing (3) directly. This is reasonable because the
estimate Ǒ0 in (10) need not account for the uncertainty of Ǒ s because of its root n consistency,
and thus, Ǒ0 is asymptotically as efficient as if ˇs were known.

From theorem 2.4, we can see that the asymptotic bias of Ǒ0 is ¹2g00.0/º�1g000.0/h2 and its
asymptotic variance is Œ¹g00.0/º2nh3��1g.0/�2: By minimizing the asymptotic MSE, we can
get the asymptotic optimal bandwidth h for estimating ˇ0:

Ohopt D

�
3g.0/�2

¹g000.0/º2

�1=7
n�1=7: (12)
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2.4. Finite sample breakdown point

To investigate robustness of the MODLRE, we also calculate its finite sample breakdown point.
A breakdown point is used to quantify the proportion of bad data in a sample that an estimator
can tolerate before returning arbitrary values. Because usually the breakdown point is most
useful in a small sample set-up (Donoho, , 1982; Donoho & Huber, , 1983), we will mainly focus
on the finite sample breakdown point. A number of definitions for the finite sample breakdown
point have been proposed (see, for example, Hampel, , 1971, 1974; Donoho, , 1982; Donoho &
Huber, , 1983). In this paper, we shall work with the finite sample contamination breakdown
point. Let ´i D .xi ; yi /. Given the sample Z D .´1; : : : ; ´n/, denote T .Z / the MODLRE Ǒ ,
as defined as the maximizer of (3). We can corrupt the original sampleZ by addingm arbitrary
points Z 0 D .´nC1; : : : ; ´nCm/. The corrupted sample Z [Z 0 then has sample size nCm and
contains a fraction ı D m=.mC n/ of bad values. The finite sample contamination breakdown
point ı� is defined as

ı�.Z ; T / D min
1�m�n

´
m

nCm
W sup
Z 0
jjT .Z [Z 0/jj D 1

μ
; (13)

where jj � jj is Euclidean norm.

Theorem Given observations Z D .´1; : : : ; ´n/, suppose T .Z / D Ǒ , the MODLRE defined
as the maximizer of (3). Let

M D
p
2�h

nX
iD1

�h

�
yi � x

T
i
Ǒ
�
: (14)

Then the finite sample contamination breakdown point of MODLRE is

ı�.Z ; T / D
m�

nCm�
; (15)

where m� is an integer satisfying dM e � m� � bM c C 1, bac is the largest integer not greater
than a and dae is the smallest integer not less than a.

The proof of theorem 2.5 is given in the Appendix. From the aforementioned theorem, we
can see that the breakdown point depends not only on �.�/, and the tuning parameter h, but
also on the sample configuration. (However, Huber (1984) pointed out if the scale (contained
in the bandwidth h of the MODLRE) is determined from the sample itself, empirically, the
breakdown point is quite high.)

3. Simulation study and application

In this section, we conduct a Monte Carlo simulation study in order to assess the performance
of our proposed MODLR under a finite sample size scenario. We will compare MODLR with
some other regression methods. A real data application is also provided.

3.1. Bandwidth selection

The modal regression estimator requires a selection of the bandwidth. The asymptotically opti-
mal bandwidth formula (9) contains the unknown quantities g.v/.0 j x/; v D 0; 2; 3, that is, the
vth derivative of the conditional density of � given x.

Hence, they are not ready to use. A commonly used method is to replace these unknown
quantities with estimates. Given the initial residual O�i D yi � x

T
i
Ǒ , where Ǒ is the traditional
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LSE (or a robust estimate if there are some outliers) of ˇ, we can estimate their mode, denoted
by Om, by maximizing the kernel density estimator (Parzen, 1962). Under the assumption of
independence of � and x, O�i � Om approximately has density g.�/, and thus, g.v/.0 j x/ can be
estimated by (see, for example, Silverman, , 1986 and Scott, , 1992)

Og.v/.0 j x/ D
1

nhvC1

nX
iD1

K.v/
²
O�i � Om

h

³
; v D 0; 2; 3;

where h is chosen using the method reported by Botev et al. (2010) and K.v/.�/ is the vth
derivative of kernel density function K.�/. Then, we can estimate J , K and L by

OJ D n�1
nX
iD1

Og00.0 j xi /xix
T
i ;
OK D n�1

nX
iD1

Og000.0 j xi /xi and

OL D n�1
nX
iD1

Og.0 j xi /xix
T
i ;

and apply (9) to estimate Ohopt . To refine the bandwidth selection, one might further iteratively
update a chosen bandwidth by recalculating the residual O�i given by the MODLR estimate.

3.2. A Monte Carlo simulation study

We generated independently and identically distributed sample ¹.xi ; yi /; i D 1; : : : ; nº from the
following model:

Y D 1C 3X C �.X/";

where X 	 U.0; 1/, " 	 0:5N.�1; 2:52/ C 0:5N.1; 0:52/ and �.X/ D 1 C 2X . Note that
E."/ D 0, Mode."/ D 1 and Median."/ D 0:67 (the last two quantities are approximate). For
this model, the conditional mean regression function is E.Y j X/ D 1 C 3X , and the condi-
tional modal regression function is Mode.Y j X/ D 2C 5X . The modal regression residual is
Y �Mode.Y jX/ D .1C2X/."�1/, whose distribution has mode at 0 but is negatively skewed.
The conditional median function is Median.Y jX/ D 1:67C 4:34X . We consider and compare
the regression parameter estimates by the following four methods: (i) traditional mean regres-
sion based on the LSE; (ii) MEDREG; (iii) MM-estimate (M-estimate with a initial robust
M-estimate of scale, Yohai, , 1987) based on Tukey’s biweight -function; and (iv) the proposed
MODLR.

Figure 1 shows the scatter plot of a generated sample with n D 200, as well as regression
lines corresponding to the four regression methods. From the plot, we can see that the modal
regression line goes through the area containing the most number of points. A small prediction
band around this line is expected to contain the most number of future points. In contrast,
the mean regression line based on LSE is skewed to a flatter line and lies in a much less dense
area for capturing the conditional mean. The regression lines based on the MEDREG and the
MM-estimate lie in higher density areas than the regression line based on LSE.

Table 1 reports the average and standard error (Std) of the parameter estimates for each
method on the basis of 1000 replicates. From this table, we see that LSE, MEDREG and
MODLR estimate their target parameters well. However, the MM-estimate does not estimate
the conditional mean function well; this is because the assumption of symmetric error density
is violated. Surprisingly, the MODLR has smaller Std than the other methods in this example
(when the error is skewed), especially when n D 200 or n D 400. Therefore, for finite samples,

© 2013 Board of the Foundation of the Scandinavian Journal of Statistics.
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Fig. 1. Scatter plot of a typical sample with n D 200 for Example 1 with different estimated regression
lines: ‘�:’ denotes the mean regression line based on LSE; ‘��’ denotes the median regression line; ‘��’
denotes the regression line based on MM-estimate; and ‘�’ denotes the modal regression line.

Table 1. Average (standard error) of parameter estimates over 1000 repetitions

Method Parameter n D 50 n D 100 n D 200 n D 400

LSE ˇ0 D 1 1.022(0.964) 0.989(0.659) 1.007(0.490) 1.009(0.322)
ˇ1 D 3 2.890(2.260) 3.063(1.500) 2.977(1.160) 2.976(0.733)

MEDREG ˇ0 D 1:67 1.587(0.707) 1.613(0.422) 1.636(0.301) 1.667(0.188)
ˇ1 D 4:34 4.226(1.670) 4.372(0.981) 4.339(0.705) 4.312(0.457)

MM-estimate ˇ0 D 1 1.051(0.782) 1.040(0.530) 1.022(0.376) 1.035(0.265)
ˇ1 D 3 5.123(1.640) 5.234(1.060) 5.271(0.744) 5.271(0.512)

MODLR ˇ0 D 2 1.789(0.670) 1.841(0.372) 1.875(0.229) 1.912(0.140)
ˇ1 D 5 4.829(1.750) 5.024(0.948) 5.044(0.574) 5.020(0.387)

LSE, least squares estimate; MEDREG, median regression; MODLR, modal linear regression.

the MODLR not only has a good modal explanation but also might have better estimation
accuracy than other methods when the error is skewed.

Table 2 reports the average (and Std) of the coverage probabilities of prediction intervals of
similar lengths centred around each estimated regression line in 1000 replicates. We consider
three different lengths of intervals: 0:1�; 0:2� and 0:5� , where � D 2 is the approximate Std of
". For each of the 1000 replications, the coverage probability is estimated from 1000 new cases
where the predictor x is equally spaced between 0.1 and 0.9. From Table 2, we see that MODLR
provides higher coverage probabilities than the other three methods. In addition, MEDREG
provides larger coverage probabilities than the MM-estimate and LSE, whereas the MM-
estimate provides larger coverage probabilities than LSE. Note that when the lengths of these
intervals are large enough, the different methods will provide similar coverage probabilities.
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Table 2. Average (standard error) of coverage probabilities over 1000 repetitions with � D 2

Width Method n D 50 n D 100 n D 200 n=400

0:1� LSE 0.034(0.015) 0.032(0.011) 0.030(0.009) 0.029(0.007)
MEDREG 0.073(0.018) 0.077(0.014) 0.078(0.012) 0.080(0.010)
MM-estimate 0.065(0.023) 0.067(0.019) 0.066(0.015) 0.067(0.012)
MODLR 0.087(0.016) 0.092(0.012) 0.095(0.010) 0.095(0.009)

0:2� LSE 0.069(0.028) 0.065(0.022) 0.061(0.015) 0.059(0.013)
MEDREG 0.144(0.033) 0.153(0.024) 0.155(0.019) 0.158(0.015)
MM-estimate 0.129(0.042) 0.133(0.034) 0.132(0.027) 0.134(0.021)
MODLR 0.170(0.027) 0.179(0.018) 0.184(0.013) 0.186(0.012)

0:5� LSE 0.186(0.062) 0.181(0.047) 0.174(0.035) 0.171(0.028)
MEDREG 0.338(0.061) 0.355(0.040) 0.360(0.029) 0.365(0.022)
MM-estimate 0.313(0.080) 0.322(0.062) 0.325(0.046) 0.330(0.036)
MODLR 0.378(0.049) 0.395(0.029) 0.404(0.018) 0.407(0.015)

LSE, least squares estimate; MEDREG, median regression; MODLR, modal linear regression.

3.3. Application to forest fire data

Forest fires, also called wildfires, cause great ecological and economical damage. Fast detec-
tion of a forest fire is vital for successful fire fighting, but traditional human or automatic
surveillance (such as by satellites, infrared or smoke scanners) is expensive. Recently the use
of low-cost meteorological data (such as temperature, wind and precipitation data) to warn
the public of a potential wildfire has received a lot of attention. This inexpensive form of
information can also be used to get a quick estimate of postfire damage.

In this section, we compare the proposed MODLR and other regression techniques with a
forest fire dataset (Cortez & Morais, 2007). The data were downloaded from
http://www.dsi.uminho.pt/~pcortez/forestfires. These forest fire data contain 517 observations
and were collected between January 2000 and December 2003 from the Montesinho Natural
Park of the Tr Kas-os-Montes northeast region of Portugal. On a daily basis, every time a forest
fire occurred, many features were recorded, such as the time, date, spatial location and weather
conditions. Following Cortez & Morais (2007), we use four meteorological variables: outside
temperature (temp), outside relative humidity (RH), outside wind speed (wind) and outside
rain (rain), as predictors for the total burned area (area). We fit the data by LSE, MEDREG,
MM-estimate and MODLR. One important feature of this dataset is that it contains outliers
and a positively-skewed response variable (area); therefore, it is expected that the proposed
MODLR will compare favourably with the mean regression.

To compare the four regression methods, we look at the widths of each prediction interval
(with the same confidence level). For constructing confidence intervals, we assume that the error
distribution of � is independent of x. Suppose we have obtained the parameter estimate Ǒ and
the corresponding error (residual) O�i D yi � x

T
i
Ǒ for i D 1; : : : ; n, we will use O�Œi� to denote

the i th smallest value of the residuals. The traditional prediction interval with confidence level
˛ for the new predictor xnew is symmetric about the point prediction of ynew : .xTnew Ǒ �
O�Œn1�;x

T
new
Ǒ C O�Œn2�/, where n1 D bn˛=2c and n2 D n � n1. This symmetric method will

be ideal if the regression error distribution is symmetric. To consider and make use of the
skewness of the error distribution, we propose to construct asymmetric prediction intervals as
follows. Suppose Og.�/ is the kernel density estimate of � based on the residuals O�1; : : : ; O�n that are
estimated by MODLR. We propose to find the indexes k1 < k2 such that k2� k1 D n2�n1 D
dn.1 � ˛/e and Og.O�Œk1�/ � Og.O�Œk2�/. The proposed prediction interval for the new predictor
xnew is .xTnew Ǒ � O�Œk1�;x

T
new
Ǒ C O�Œk2�/. We propose the following iterative algorithm to find

indexes k1 and k2: Let k1 D n1 and k2 D n2 be the initial values for k1 and k2.
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Table 3. Average widths (coverage rates) of the prediction intervals

Methods
Nominal confidence levels

10% 30% 50% 90%

LSE 2.166(0.101) 6.687(0.294) 12.70(0.493) 53.03(0.896)
MEDREG 0.975(0.091) 2.638(0.292) 6.506(0.491) 48.52(0.894)
MM-estimate 1.144(0.099) 2.910(0.294) 6.499(0.497) 48.49(0.906)
MODLR 0.012(0.112) 0.035(0.311) 0.571(0.499) 26.44(0.899)

LSE, least squares estimate; MEDREG, median regression; MODLR, modal linear regression.

Step 1. If Og.�OŒk1�/ < Og.O�Œk2�/ and Og.O�Œk1C1�/ < Og.O�Œk2C1�/, k1  k1 C 1 and k2  k2 C 1;
if Og.O�Œk1�/ > Og.O�Œk2�/ and Og.O�Œk1�1�/ > Og.O�Œk2�1�/, k1  k1 � 1 and k2  k2 � 1.

Step 2. Iterate the aforementioned procedure until none of the aforementioned two
conditions is satisfied or .k1 � 1/.k2 � n/ D 0.

We use this method to construct prediction intervals for MODLR.
In Table 3, we report the average widths and the actual coverage rates of the prediction

intervals for 10%; 30%; 50% and 90% confidence levels.
The actual coverage rates are estimated on the basis of leave-one-out cross validation. From

Table 3, we have the following findings:

(i) all the prediction intervals are well-calibrated—the actual coverage rates are very close
to the nominal confidence levels.

(ii) the average widths of prediction intervals constructed around the point prediction
defined by MODLR are significantly shorter than the prediction intervals constructed
around the other three estimates.

(iii) both MEDREG and MM-estimate have shorter prediction intervals than LSE.

4. Summary and discussions

In this article, we proposed a new data analysis tool called MODLR in order to explore the
relationship between a response variable and a set of predictors. MODLR investigates this
relationship using the conditional mode instead of the conditional mean or other summaries
used by traditional regression techniques. When the error distribution is skewed, MODLR
provides a more meaningful prediction than LSE. Our empirical results show that the MODLR
provides significantly shorter prediction intervals than other regression methods.

In the application to the forest fire dataset, we provided one possible way to construct asym-
metric prediction intervals for MODLR. On the basis of cross-validation results, the proposed
skewed prediction intervals for MODLR were much shorter than the prediction intervals con-
structed by some of the other commonly used regression methods for forest fire data. Further
research can be conducted to find out how to construct the shortest (skewed) prediction inter-
val for a given confidence level using the information of skewed error density. One related work
is by Kim & Lindsay (2011), who proposed to use confidence distribution sampling to visualize
confidence sets.

Modal linear regression assumes that the mode of the conditional density of Y given x is a
linear function of x. The idea of MODLR can be easily generalized to other models such as
non-linear regression, non-parametric regression and varying coefficient partial linear regres-
sion. In addition, it would also be interesting to see how to select the most informative variables
on the basis of this modal regression idea. This will comprise our future research work.
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Appendix

The following technical conditions are imposed in this section.

(A1) g.v/.t j x/; v D 0; 1; 2; 3 is continuous in a neighbourhood of 0, and g0.0 j x/ D 0 for
any x.

(A2) n�1
Pn
iD1 g

00.0 j xi /xix
T
i
D J C op.1/; n

�1
Pn
iD1 g

000.0 j xi /xi D K C op.1/ and
n�1

Pn
iD1 g.0 j xi /xix

T
i
D LC op.1/, where J < 0, that is, �J is a positive definite

matrix.
(A3) n�1

Pn
iD1 kxik

4 D Op.1/.
0, and g0.0 j x/ D 0 any x.

The aforementioned conditions are mild and are fulfilled in many applications. Note that the
J;K and L are defined in theorem 2.3. All the results proved in this section also hold if general
kernels are used for � in (3) under some mild conditions adopted for traditional kernel density
estimator (for example, � is symmetric about 0 and has bounded continuous third derivative.
In addition, � has finite second moment with

R
t2�2.t/dt <1).

Proof of theorem 2.1: Note that

log
°
Qh

�
ˇ.kC1/

�±
� log

°
Qh

�
ˇ.k/

�±
D log

´
nX
iD1

�h

�
yi � x

T
i ˇ

.kC1/
�μ
� log

´
nX
iD1

�h

�
yi � x

T
i ˇ

.k/
�μ

D log

2
4 nX
iD1

�h

�
yi � x

T
i
ˇ.kC1/

�
Pn
iD1 �h

�
yi � x

T
i
ˇ.k/

�
3
5

D log

2
4 nX
iD1

�h

�
yi � x

T
i
ˇ.k/

�
Pn
iD1 �h

�
yi � x

T
i
ˇ.k/

� �h
�
yi � x

T
i
ˇ.kC1/

�
�h

�
yi � x

T
i
ˇ.k/

�
3
5

D log

2
4 nX
iD1

�
�
i j ˇ.k/

� �h �yi � xTi ˇ.kC1/�
�h

�
yi � x

T
i
ˇ.k/

�
3
5

On the basis of the Jensen’s inequality, we have

log
°
Qh

�
ˇ.kC1/

�±
� log

°
Qh

�
ˇ.k/

�±
�

nX
iD1

�
�
i j ˇ.k/

�
log

8<
:
�h

�
yi � x

T
i
ˇ.kC1/

�
�h

�
yi � x

T
i
ˇ.k/

�
9=
; :

On the basis of the property of M-step in (6), we have

log
°
Qh

�
ˇ.kC1/

�±
� log

°
Qh

�
ˇ.k/

�±
� 0;

and thus, Qh
�
ˇ.kC1/

�
� Qh

�
ˇ.k/

�
.

Proof of theorem 2.2: Note that

�00h.t/ D h
�3

 
t2

h2
� 1

!
�.t=h/ and �0h.t/ D �

t

h3
�.t=h/:

Let an D .nh3/�1=2 C h2. It is sufficient to show that for any given � > 0, there exists a large
constant c such that

P

´
sup
k�kDc

Qh .ˇ0 C an	/ < Qh .ˇ0/

μ
� 1 � �: (16)
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Let X D .x1; : : : ;xn/
T and y D .y1; : : : ; yn/

T . Denote

Kn �
@Qh .ˇ0/

@ˇ
D �

1

n

nX
iD1

�0h

�
yi � x

T
i ˇ0

�
xi (17)

Jn �
@2Qh .ˇ0/

@ˇˇT
D
1

n

nX
iD1

�00h

�
yi � x

T
i ˇ0

�
xix

T
i ; (18)

where Qh.ˇ/ is defined in (3) and ˇ0 is the true parameter value.
On the basis of Taylor expansion and symmetric property of �.t/, we can get the mean and

variance of Jn and Kn:

E .Jn j x/ D
1

n

nX
iD1

g00 .0 j xi /xix
T
i ¹1C op.1/º D J ¹1C op.1/º ;

Var .Jn j x/ D Op

²�
nh5

��1³
;

E .Kn j x/ D
h2

2n

nX
iD1

g000 .0 j xi /xi .1C op.1// D
h2

2
K¹1C op.1/º;

Cov .Kn j x/ D
1

n2h3
�2

nX
iD1

g .0 j xi /xix
T
i ¹1C o.1/º D

1

nh3
�2L¹1C op.1/º;

(19)

where J D limn�1
Pn
iD1 g

00.0 j xi /xix
T
i
; K D limn�1

Pn
iD1 g

000.0 j xi /xi and L D

limn�1
Pn
iD1 g.0 j xi /xix

T
i

. By default, when calculating the variance of a matrix, we find
the variance of each element of the matrix. Using the result X D E.X/ C Op.¹Var.X/º1=2/,
because nh5 !1, Jn D J C op.1/, notice that

Qh.ˇ0 C an	/ �Qh.ˇ0/ D anK
T
n 	C

a2n
2
	T Jn	

�
a3n
6nh4

nX
iD1

�
000

 
yi � x

T
i
ˇ�

h

!�
xTi 	

�3
DM1 CM2 CM3 ;

(20)

where jjujj D c and jjˇ� � ˇ0jj � can. From (19), we get Kn D Op.an/ and hence M1 D
Op.a

2
n/. Note that M2 D 0:5a2n	

T J	¹1 C op.1/º. On the basis of the boundness of �.4/.t/
and jjˇ� � ˇ0jj � can, we have

�
000

 
yi � x

T
i
ˇ�

h

!
D �

000

 
yi � x

T
i
ˇ0

h

!
.1C op.1// :

Noting that �
000
.t/ D .3t � t3/�.t/, on the basis of the Taylor expansion and the symmetric

property of �.t/, we have that

E

´
�000

 
Yi � x

T
i
ˇ0

h

!ˇ̌̌
ˇ̌x
μ
D Op.h

4/; Var

´
�000

 
Yi � x

T
i
ˇ0

h

!ˇ̌̌
ˇ̌x
μ
D Op.h/: (21)

Because nh5 !1, we can prove that M3 D op.a2n/.
For any � > 0, we can choose c big enough, such that the second term M2 dominates the

other two terms in (20) with probability 1 � �. Because J < 0, Qh.ˇ0 C an	/ �Qh.ˇ0/ < 0

with probability 1 � �. The result of theorem 2.2 follows.
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Proof of theorem 2.3: Suppose Ǒ is the consistent solution to @Qh.ˇ/=@ˇ found in theorem 2.2.
On the basis of the Taylor expansion, we have

0 D
@Qh. Ǒ /

@ˇ
D Kn C .Jn C Ln/. Ǒ � ˇ0/ ; (22)

where

Ln D �
1

2nh4

nX
iD1

"
�
000

 
Yi � ˇ

�T xi

h

!°
. Ǒ � ˇ0/

T xi

±
xix

T
i

#
;

where kˇ� � ˇ0k � k Ǒ � ˇ0k.
On the basis of the result of (22), we have Ǒ � ˇ0 D .Jn C Ln/

�1Kn. Because jj Ǒ � ˇ0jj D
Op.an/, where an D .nh3/�1=2C h2, similar to the proof of M3 in (20), we have Ln D op.1/.
Hence, on the basis of (19), we have Ǒ �ˇ0 D J

�1Kn.1Cop.1//. Next, we prove the asymptotic
normality for K�n D

p
nh3Kn.

For any unit vector d 2 R
pC1, we prove

°
dTCov.K�n /d

±� 12 °
dTK�n � d

TE.K�n /
±
D
�! N.0; 1/

Let


i D �
1
p
nh
�0

 
Yi � x

T
i
ˇT0

h

!
dT xi :

Then dTK�n D
Pn
iD1 
i . We check the Lyapunov’s condition. On the basis of the results (19),

we know

Cov.Kn/ D
L

nh3
�2¹1C o.1/º: (23)

Hence, Var.dTK�n / D nh3dTCov.Kn/d D g.0/�2d
TLd C o.1/. So we only need to prove

nEj
1j3 ! 0: Noticing that .dT xi /2 � kxik2kdk2 D kxik2 and �0.�/ is bounded, we have
nEj
1j3 � O¹.nh3/�1=2º ! 0. So, the asymptotic normality for K�n holds, that is, we have

p
nh3

°
Kn � h

2K=2.1C op.h
2//
±
D
�! N.0; �2L/:

On the basis of the Slutsky’s theorem, we have

p
nh3

"
Ǒ � ˇ �

h2

2
J�1K¹1C op.h

2/º

#
D
�! N

°
0; �2J

�1LJ�1
±
:

Proof of theorem 2.4: Because Ǒ s has root n consistency, the asymptotic result of Ǒ0 is the same
as if Ǒ s were known, and its asymptotic distribution can be derived from theorem 2.3 by assum-
ing x D 1 and the independence of � and x, under which we have J�1K D g000.0/=.2g00.0//

and J�1LJ�1 D g00.0/�2g.0/. Then the result follows.

Proof of theorem 2.5: Let ��.t/ D
p
2�h�h.t/. Then M D

Pn
iD1 �

�.yi � x
T
i
Ǒ /; where Ǒ D

T .Z /. Notice that ��.�/ has a maximum at 0 with ��.0/ D 1 and ��.�/ decreases monotonely
toward both sides and that lim��.t/ D 0 for jt j ! 1:
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We first prove that T .Z [Z 0/ stays bounded ifm < M . Let 
 > 0 be such thatmCn
 < M ,
and let C be such that ��.t/ � 
 for jt j � C . Let ˇ be any real vector such that jy �xTˇj � C
for all ´ D .x; y/ in Z . Then

mCnX
iD1

��
�
yi � x

T
i T .Z /

�
�M (24)

and

mCnX
iD1

��
�
yi � x

T
i ˇ

�
� n
 Cm: (25)

From (24) and (25), one knows that T .Z [ Z 0/ must satisfy jy � xT T .Z [ Z 0/j < C for a
point in Z , and thus, T .Z [Z 0/ is bounded.

On the other hand, ifm > M , let 
 > 0 such thatm�m
 > M , and letC be such that ��.t/ �

 for jt j � C . Assume that all points ¹.xnC1; ynC1/; : : : ; .xnCm; ynCm/º in Z 0 are the same
and satisfy a linear relationship y D xT ˇ�. Let ˇ be any vector such that jynC1�xTnC1ˇj < C .
Then

mCnX
iD1

��
�
yi � x

T
i ˇ

�
�M Cm
; (26)

and

mCnX
iD1

��
�
yi � x

T
i ˇ
�
�
� m: (27)

From (26) and (27), one knows that T .Z [ Z 0/ must satisfy jynC1 � xTnC1T .Z [ Z
0/j � C .

If we let ynC1 ! 1 with xnC1 fixed, jjT .Z [ Z 0/jj must go off to infinity, and we have
breakdown.
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